Chapter1.TheRolesofDataandPredictiveAnalyticsinBusiness.pptx

The Roles of Data and Predictive Analytics in Business

Chapter 1

© 2019 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Learning Objectives

Explain how predictive analytics can help in business strategy formulation.

Distinguish structured from unstructured data.

Differentiate units of observation.

Outline a data-generating process.

Describe the primary ways that data analysis is used to aid business performance.

Discriminate between lead and lag information.

Discriminate between active and passive prediction.

Recognize questions pertaining to business strategy that may utilize (active) predictive analytics.

‹#›

© 2019 McGraw-Hill Education.

Defining Data & Data Uses in Business

Data

A collection of information

Database

Organized collection of data that firms use for analysis

Business analytics

The use of data analysis to aid in business decision making

Predictive analytics

The use of data analysis to designed to form predictions about future, unknown, events or outcomes

‹#›

© 2019 McGraw-Hill Education.

Business Strategy

Plan of action designed by a business practitioner to achieve a business objective

Business objectives include profit maximization, enhanced employee satisfaction, etc.

Examples of action include pricing decisions, advertising campaigns, and methods of employee compensation

‹#›

© 2019 McGraw-Hill Education.

Predictive Analytics for Business Strategy

With no data, strong theoretical model is often not enough to predict effective business strategies

Sound theoretical arguments coupled with data becomes a strong tool to predict effective business strategies

Predictive analytics is an ideal complement to create a successful business strategy

‹#›

© 2019 McGraw-Hill Education.

Data Features

Structured Data

Data with well-defined units of observation which can be classified and structured in the form of a spreadsheet.

An example:

‹#›

© 2019 McGraw-Hill Education.

Data Features

Unstructured Data

Any data that cannot be classified and structured.

An example:

‹#›

© 2019 McGraw-Hill Education.

The Unit of Observation

The entity for which information has been collected

Crucial component of structured data

Tells us the way the in which the information in a dataset varies

Answers the questions: What, Where, Who, When?

Four main groupings: cross-sectional data, pooled cross-sectional data, time-series data, and panel data

‹#›

© 2019 McGraw-Hill Education.

Data Types

Cross-Sectional Data

Data that provide a snapshot of information at one fixed point in time.

An example:

‹#›

© 2019 McGraw-Hill Education.

Data Types

Pooled Cross-Sectional Data

Combination of two or more unrelated cross-sectional data merged into one.

An example

‹#›

© 2019 McGraw-Hill Education.

More Data Types

Time-series data:

Data that exhibit only variation in time

An example

‹#›

© 2019 McGraw-Hill Education.

More Data Types

Panel data

Same cross-sectional units over multiple points in time

An example

‹#›

© 2019 McGraw-Hill Education.

Data Generating Process (DGP)

Data Generating Process

The underlying mechanism that produces the pieces of information contained in a dataset

Steps for DGP

Establish both formal and informal DGP

Understand what variables are important

Create a representative statistical model

Collect and analyze relevant variables and perform simple tests

‹#›

© 2019 McGraw-Hill Education.

Basic Uses of Data Analysis for Business

Categories include:

Queries

Pattern discovery

Causal inference

‹#›

© 2019 McGraw-Hill Education.

Queries

Any request for information from a database

Descriptive Statistics

Quantitative measures meant to summarize and interpret properties of a dataset

Pivot Table

A tool for data summarization that enables different views of the underlying dataset.

‹#›

© 2019 McGraw-Hill Education.

Pattern Discovery

Pattern

Any distinct relationship between observations within a dataset

Pattern discovery

The process of identifying distinctive relationships between observations in a dataset

Data mining

Pattern discovery, typically in large datasets

‹#›

© 2019 McGraw-Hill Education.

Pattern Discovery

Types of Pattern Discovery

Association analysis

Looking for conditional probabilities to determine relationships between two or more variables

Cluster analysis

Groups of observations according to some measure of similarity

Outlier detection

Small subsets of observations, if they exist, that contain information far different from the vast majority of the observations in the dataset

‹#›

© 2019 McGraw-Hill Education.

17

Examples of Pattern Discovery

Example of Outlier Detection and Cluster Analysis

Example of Association Analysis: Scatter Plot on Profit & Price

‹#›

© 2019 McGraw-Hill Education.

Causal Inference

The process of establishing a causal relationship between a variable(s)representing a cause and a variable(s) representing an effect, where a change in the cause variable results in changes in the effect variable

Causal Inference

Direct: A change in the causal variable, X, directly affects change variable Y

Indirect: A change in X causes a change in Y, but only through its impact on a third variable, Z

‹#›

© 2019 McGraw-Hill Education.

Use of Causal Inference

Causal inference occurs in two ways:

Causal Inference has two important applications

Using Experimentation

Econometric Models

Prediction

Campaign Evaluation

‹#›

© 2019 McGraw-Hill Education.

Data Analysis for the Past, Present, and Future

Lag information

Information about past outcomes

Typically contains information on key performance indicators (KPIs), or variables that are used to help measure firm performance

Designed to answer the question, “What happened/ What is happening?”

Lag information can be generated by queries, pattern discovery, and causal inference

‹#›

© 2019 McGraw-Hill Education.

Examples of Lag Information

Reports

Any structured presentation of the information in a dataset

Scorecards

Any structured assessment of variables of interest, typically KPIs, against a given benchmark

Dashboards

A graphical presentation of the current standing and historical trends for variables of interest, typically KPIs

‹#›

© 2019 McGraw-Hill Education.

Report Example

‹#›

© 2019 McGraw-Hill Education.

Dashboard Example

‹#›

© 2019 McGraw-Hill Education.

Scorecard Example

‹#›

© 2019 McGraw-Hill Education.

Lead Information

Lead Information

Information that provides insights about the future

Designed to answer the question, “What is going to happen?”

It helps firms in its future planning process with expectations and strategic moves.

Lead information is not generally presented in a standardized format

‹#›

© 2019 McGraw-Hill Education.

Predictive Analytics and Lead Information

Predictive analytics is data analysis designed to provide lead information

Two ways predictive analytics can predict the future

Active prediction

Passive Prediction

‹#›

© 2019 McGraw-Hill Education.

Passive Prediction

Passive prediction uses predictive analytics to make predictions based on actual or hypothetical data, where no variables are exogenously altered.

Exogenously altered – a variable in a dataset that changes due to factors outside the data-generating process that are independent of all other variables within the data-generating process

Examples: Weather forecasting, prediction about customers likely to drop service etc.

Pattern discovery (data mining) when used to make predictions, is generally used for passive predictions

Model fit – the basis on which analysts choose among competing models for passive prediction

‹#›

© 2019 McGraw-Hill Education.

Active Prediction

Active prediction uses predictive analytics to make predictions based on actual or hypothetical data, for which one or more variables are exogenously altered.

Making active predictions need causal relationship between variable ‘X’ and variable ‘Y’.

If change in X affects Y, this occurs due to a causal relationship between the two.

‹#›

© 2019 McGraw-Hill Education.

Active Prediction for Business Strategy Formation

Predicting an outcome for alternative strategies requires the application of active prediction

To accurately predict an outcome for a range of competing strategies, you must establish the causal effects of those strategies in that outcome

The leap from correlation to causality is a large one, and can lead to grossly incorrect predictions

‹#›

© 2019 McGraw-Hill Education.

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.jpeg

image9.png

image10.png

image11.png

image12.png

image13.png

Calculate your order
Pages (275 words)
Standard price: $0.00
Client Reviews
4.9
Sitejabber
4.6
Trustpilot
4.8
Our Guarantees
100% Confidentiality
Information about customers is confidential and never disclosed to third parties.
Original Writing
We complete all papers from scratch. You can get a plagiarism report.
Timely Delivery
No missed deadlines – 97% of assignments are completed in time.
Money Back
If you're confident that a writer didn't follow your order details, ask for a refund.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
Power up Your Academic Success with the
Team of Professionals. We’ve Got Your Back.
Power up Your Study Success with Experts We’ve Got Your Back.
Open chat
1
Hello. Can we help you?